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Synthesis of dibromo- and tetrabromo-
bipyrrolines and their corresponding
2,6-diazasemibullvalene derivatives†

Zhe Huang,a Ming Zhan,a Shaoguang Zhang,a Qian Luo,a Wen-Xiong Zhang *a

and Zhenfeng Xi*a,b

Treatment of Δ1-dipyrrolines with NBS afforded α,α’-dibromo-Δ1-bipyrrolines and α,α,α’,α’-tetrabromo-

Δ1-bipyrrolines respectively with excellent selectivity depending on the amount of NBS. All these multi-

bromo-substituted Δ1-bipyrrolines could be efficiently transformed into their corresponding 2,6-diaza-

semibullvalene derivatives via reduction with lithium. An unprecedented rearrangement of 4,8-dibromo-

2,6-diazasemibullvalene afforded a new type of bipyrroline derivative.

Introduction

2,6-Diazasemibullvalenes (NSBVs) have attracted fundamental
interest both theoretically and experimentally for a long time
because of their rapid aza-Cope rearrangement and the pre-
dicted existence of a homoaromatic delocalized structure
(Scheme 1).1–7 However, the synthesis and structural study of
NSBV derivatives have been a great challenge in organic
chemistry.

Müllen and co-workers reported the experimental in situ
NMR identification of an NSBV, 1,5-dimethyl-3,7-diphenyl-2,6-
diazasemibullvalene as a breakthrough in 1982 (Scheme 1).5a

However, limited to the synthetic method of the reagent
(Δ1-bipyrroline), only one example of NSBV was obtained. 30 years
later, two efficient methods for the synthesis of NSBVs were
reported by our lab in 2012.6a A series of 3,7-dialkyl-substi-
tuted diazasemibullvalenes were synthesized and isolated
from the reaction of dilithio reagents with nitriles.

Δ1-Bipyrroline derivatives are a class of important com-
pounds with interesting structures. An N-containing fused-ring
is a common moiety in synthetic intermediates and biologi-
cally active compounds.8 While synthetic methods for
Δ1-bipyrrolines are rare, we have found that the reaction of
dilithio reagents with nitriles is an efficient way.9 Herein,

based on the synthetic method of Δ1-bipyrrolines developed in
our lab, we could largely expand the scope of NSBV derivatives.
A number of 3,7-dialkyl-substituted and 3,7-diaryl-substituted
NSBVs could be obtained in good to excellent yields.

The electron-withdrawing halide substituents on NSBVs are
expected to have a remarkable effect on both the rate of aza-
Cope rearrangement and their further reaction chemistry.3e,7

In our previous work, 4,8-dichloro-2,6-diazasemibullvalenes
have been obtained efficiently via treatment of the corres-
ponding α,α,α′,α′-tetrachloro-Δ1-bipyrrolines with lithium.6f In
this work, a series of α,α,α′,α′-tetrabromo-Δ1-bipyrrolines and
4,8-dibromo-2,6-diazasemibullvalenes were synthesized via a
similar strategy.9a,10 Meanwhile, the skeletal rearrangements

Scheme 1 2,6-Diazasemibullvalene derivatives.
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of NSBV and its derivatives are interesting, where the substitu-
ents play an important role in their thermal stability. Non-
bridged NSBVs can undergo a thermal rearrangement to give
1,5-diazocine.5b Bridged 4,8-dichloro-2,6-diazasemibuvallenes
could undergo a different skeletal rearrangement to form
bipyrroline derivatives.6f When 4,8-dibromo-2,6-diazasemi-
buvallenes were synthesized and isolated, however, a new
rearrangement was observed, demonstrating the different
effects of halide substituents on the NSBV core skeleton.

Results and discussion

Based on our own synthetic method,9a the starting materials,
Δ1-bipyrroline derivatives 1a–f used in this study were all
obtained by the reaction of 1,4-dilithio-1,3-butadienes with
2 equivalents of nitriles. As shown in Scheme 2, the reaction of
Δ1-bipyrroline 1a with 2.4 equivalents of N-bromosuccinimide
(NBS) at 80 °C for 12 h afforded the corresponding α,α′-
dibromo-Δ1-bipyrroline 2a in 48% isolated yield, along with a
small amount of α,α,α′-tribromo Δ1-bipyrroline as a side
product.10,11 Due to this side reaction, most α,α′-dibromo-
Δ1-bipyrrolines (2a–2f ) could only be isolated in moderate
yields (Scheme 2). Nevertheless, a range of Δ1-bipyrrolines
could be applied in this reaction, where R2 were aryl groups
(Ph, p-tolyl) or alkyl groups (tBu, adamantyl). Non-bridged
Δ1-bipyrrolines (1e and 1f ) were also applicable for this reac-
tion and their corresponding α,α′-dibromo-Δ1-bipyrrolines (2e
and 2f ) were obtained in higher yields.

As shown in Scheme 3, 2,6-diazasemibuvallenes could be
easily synthesized by the reaction of α,α′-dibromo-Δ1-bipyrro-
lines with lithium in THF at room temperature. The in situ
NMR experiment showed that α,α′-dibromo-Δ1-bipyrroline 2a

was transformed to 2,6-diazasemibuvallene 3a quantitatively
without any side reactions. After removing LiBr, analytically
pure 2,6-diazasemibuvallene 3a could be obtained. However,
due to the little solubility difference of 3a and LiBr in the
mixed solvent (hexane : Et2O = 3 : 1), the isolated yield of 3a
was 81%. Similarly, 2,6-diazasemibuvallenes 3b–3f were syn-
thesized from the corresponding α,α′-dibromo-Δ1-bipyrrolines
(2b–2f ). Higher isolated yields could be achieved for 1,5-
dialkyl-substituted diazasemibuvallenes (3e and 3f ) because of
their higher solubility than LiBr in hexane. The NMRs of 3a–3c
showed the existence of a rapid aza-Cope rearrangement of
2,6-diazasemibuvallenes, which was similar to the known 2,6-
diazasemibuvallenes 3d–3f.

Tetrabromo-Δ1-bipyrrolines 4 were obtained in moderate to
high isolated yields when 10.0 equivalents of NBS were used
and the reaction time was prolonged to 48 h (Scheme 4). The
structure of 4a was determined by single-crystal X-ray structural
analysis (Fig. 1).

As shown in Scheme 5, 4,8-dibromo 2,6-diazasemibuval-
lenes 5a–c were successfully synthesized and isolated from the
reaction of α,α,α′,α′-tetrabromo-Δ1-bipyrrolines with lithium in
THF at room temperature via C–N bond formation. An in situ
NMR experiment indicated that three α,α,α′,α′-tetrabromo-

Scheme 2 The synthesis of α,α’-dibromo-Δ1-bipyrrolines.

Scheme 3 The synthesis of 2,6-diazasemibuvallenes.

Scheme 4 The synthesis of α,α,α’,α’-tetrabromo-Δ1-bipyrrolines.
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Δ1-bipyrrolines could be transformed into the corresponding
4,8-dibromo-2,6-diazasemibuvallenes (5a–c) successfully.

The NMR spectra of all these dibromodiazasemibullvalenes
showed the existence of an extremely rapid aza-Cope rearrange-
ment in solution. The C3/C7 of 5c displayed a singlet at
159.4 ppm in the 13C NMR spectrum in THF-d8, which is a
little downfield shifted than the value of C3/C7 of the corres-
ponding non-brominated diazasemibullvalene (163.3 ppm)

and upfield shifted than that of the dichlorodiazasemibullva-
lene (157.2 ppm).6a,f Obviously, the bromide substituents had
an electronic effect on the diazasemibullvalene core.

When diazasemibuvallene 5c was kept in THF-d8 at room
temperature, a slow skeletal rearrangement took place, as
monitored by NMR, until 5c was totally transformed into a
new bipyrroline derivative 6 after one month. This process
could be promoted by light and completed in 3 days, and the
product 6 was isolated in 82% yield. The structure of 6 was
determined by single-crystal X-ray structural analysis (Fig. 2).

A similar rearrangement to that of 4,8-dichloro-2,6-diaza-
semibuvallene is proposed and shown in Scheme 6.6f The reac-
tion was initiated via opening of the three-membered ring
destabilized by the bromide. Then the lone pair electron of the
nitrogen atom transformed to build a CvN bond, generating a
carbine intermediate 8 stabilized by the bromide. An intra-
molecular carbine attack occurred to give the intermediate 9,
which afforded the product 6.

Conclusions

A series of α,α′-dibromo-Δ1-bipyrrolines and α,α,α′,α′-tetra-
bromo-Δ1-bipyrrolines were synthesized and transformed into
their corresponding 2,6-diazasemibuvallenes and 4,8-dibromo-
2,6-diazasemibuvallenes via reduction with lithium. The suc-
cessful synthesis of all these novel compounds should lead to
further study on their chemical and physical properties.
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Fig. 1 ORTEP drawing of 4a with 30% thermal ellipsoids. Hydrogen
atoms are omitted for clarity. Selected bond lengths [Å]: C(1)–N(1) 1.462(7),
C(1)–C(2) 1.565(9), C(2)–C(3) 1.513(8), C(4)–N(2) 1.480(8), C(4)–C(5)
1.569(8), C(5)–C(6) 1.521(8), C(6)–N(1) 1.273(7), C(2)–Br(1) 1.965(6),
C(2)–Br(2) 1.943(6), C(5)–Br(3) 1.931(6), C(5)–Br(4) 1.967(6).

Scheme 5 The synthesis of 4,8-dibromo-2,6-diazasemibuvallenes.

Fig. 2 ORTEP drawing of 6 with 30% thermal ellipsoids. Hydrogen
atoms are omitted for clarity. Selected bond lengths [Å]: C(1)–N(1) 1.292(7),
C(1)–C(2) 1.496(7), C(2)–C(3) 1.321(7), C(3)–C(4) 1.485(7), C(4)–N(2)
1.298(6), N(2)–C(5) 1.476(7), C(5)–C(6) 1.538(7), C(6)–N(1) 1.479(6), C(2)–
Br(1) 1.885(5), C(5)–Br(2) 1.969(5).

Scheme 6 Rearrangement of 4,8-dibromo-2,6-diazasemibuvallene 5c.
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